Selected Syntheses (5/>25) of Hirsutene

 $C_{15}H_{24}$

CHO
Br

Mg, then Ac₂O, LAH, reat 78% hint 5

A rings
$$C_{15}H_{22}O$$

A rings $C_{15}H_{22}O$

A rings $C_{15}H_{20}$

A rings $C_{15}H_{20}$

Br

CSA, 71% hint 5

L

Crabtree, H_2

NalO₄, P(OMe)₃, 60% hint 5

hint 1: Thallium Perchlorite has been effectively used for ring-expansions (in an oxidative fashion, TI(I) generated), the 5 membered-side transfered in this case.

hint 2: Rearrangement didn't work in a desired way.

hint 3 : Sublimation of F through a Pyrex Vigreux column heated to 500 "C at 1mmHg and direct crystallisation of the pyrolysate gave G. 3 rings in G

hint 4 : By comparing G (stereocenters!) with Hirsutene one should know the purpose of this step. This reaction went through a transposed bis-enone as an intermediate

hint 5: "Radical conjugated addition"

hint 6: not DA

hint 7: Imagine what's needed in the following step, product of this step has the formular of C₁₃H₂₀N₂

hint 8: R contains a tri-substituted olefin