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Colorimetric Protein Phosphatase Inhibition Assay 

 

Materials 

Protein phosphatase 1 (PP1) (New England Biolabs, #P0754S) 

para-Nitrophenylphosphate (pNPP) (Fisher Scientific, #10655562) 

Beckman DU-640 spectrophotometer  

The assay was performed following published procedures1-2 with slight modifications. The 

assay was performed 3-5 times, each in technical duplicates or triplicates. The concentration 

of natural and synthetic MCs was determined UV spectroscopically at  = 238 nm by using 

the published extinction coefficient of MC-LR.3  Solutions of MC derivatives in dH2O (20 

µL) with ten different concentrations obtained by serial dilutions were mixed with a solution 

of PP1 in enzyme diluent buffer (20 µL, 1.5 U mL-1)1 in a 96-well plate. The mixture was 

incubated for 5-10 min at 37°C and substrate solution (200µL, 60 mM pNPP)1 was added. 

Absorption ( = 405 nm) was directly measured after the addition of the substrate (t = 0h) and 

after an incubation time of 3h at 37°C. For every assay a 100% control (20 µL dH2O, no 

toxin) and a 0% control (20 µL enzyme diluent buffer,1 no PP1) was performed. The protein 

phosphatase activity was calculated by subtracting the absorption value at t = 0h from the 

value determined after 3h. Afterwards the mean of the 0% control (blank) was subtracted 

from the means of the samples (blank correction). Individual enzyme activity was normalized 

to the 100% control. The IC50 values were calculated using GraphPad Prism 5.0 software by 

performing a 5-PL non-linear regression.  
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LC-MS Analyses of Microcystin Derivatives 

 

Figure S1. LC-MS analysis of natural MC-LF (Gradient: 50-100% B in 15 min, tR = 9.1 min).  

  



S4 
 

 

 

  

Figure S2. LC-MS analysis of synthetic MC-LF 1a (gradient: 50-100% B in 15 min, tR = 9.1 
min). 
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Figure S3. LC-MS analysis of a coinjection of natural and synthetic MC-LF 1a (gradient: 50-
100% B in 15 min, tR = 9.1 min) 
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Figure S4. LC-MS analysis of a coinjection of synthetic MC-LF 1a and [Phe-d5
4]-MC-LF 1b 

(gradient: 40-90% B in 15 min, tR = 12.4 min). The ESI-MS (-) spectrum corresponds to the 
peak with tR = 12.4 min. 
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Figure S5. LC-MS analysis of MC-LY(Prg) 1c (gradient: 50-78% B in 12.5 min, tR = 
10.1 min). 

 

 

Figure S6. Analytical RP-HPLC analysis of 23c (gradient: 50-100% B in 15 min, tR = 9.6 

min). Column: Kinetex 2.6 m C18 100A, 100 x 3.0 mm (Phenomenex), flow rate: 
0.6 mL min–1. 
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NMR Spectra of Synthesized Compounds (Sorted According to Compound Number) 

 

1H NMR spectrum (600 MHz, 300 K, CD3OD) of 1a. Different H/D-exchange rates can be estimated from the integrals of remaining incompletely 
exchanged NH signals. 
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13C NMR spectrum (151 MHz, 300 K, CD3OD) of 1a.  
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1H NMR spectrum (600 MHz, 284 K, CD3OD) of 1b. Different H/D-exchange rates can be estimated from the integrals of remaining incompletely 
exchanged NH signals. 
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13C NMR spectrum (151 MHz, 284 K, CD3OD) of 1b. 
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1H NMR spectrum (600 MHz, 300 K, CD3OD) of 1c. Different H/D-exchange rates can be estimated from the integrals of remaining incompletely 
exchanged NH signals. 
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13C NMR spectrum (151 MHz, 300 K, CD3OD) of 1c. 
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of 4. 
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13C NMR spectrum (101 MHz, 300 K, CDCl3) of 4. 
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of 5a. 



S17 
 

 

13C NMR spectrum (101 MHz, 300 K, CDCl3) of 5a. 
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of 5b. 
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13C NMR spectrum (101 MHz, 300 K, CDCl3) of 5b. 
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of 5c. 
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13C NMR spectrum (101 MHz, 300 K, CDCl3) of 5c. 
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of 7. 
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13C NMR spectrum (101 MHz, 300 K, CDCl3) of 7. 
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of 8b. 
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13C NMR spectrum (101 MHz, 300 K, CDCl3) of 8b. 
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of 8c. 
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13C NMR spectrum (101 MHz, 300 K, CDCl3) of 8c.  
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of 12. 
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1H NMR spectrum (400 MHz, 300 K, D2O) of Bn-D-Asp-OH. 
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1H NMR spectrum (400 MHz, 300 K, DMSO-d6) of 14. 
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13C NMR spectrum (101 MHz, 300 K, DMSO-d6) of 14. 
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of Bn-D-Asp(OBn)-Ot-Bu. 
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13C NMR spectrum (101 MHz, 300 K, CDCl3) of Bn-D-Asp(OBn)-Ot-Bu. 
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of 15. 
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13C NMR spectrum (101 MHz, 300 K, CDCl3) of 15. 
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of erythro-16. 
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13C NMR spectrum (101 MHz, 300 K, CDCl3) of erythro-16. 



S38 
 

 

1H NMR spectrum (400 MHz, D2O, 300 K, pD > 14) of H-MeAsp-OH. 

3JCH‐CH = 9.0 Hz 
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1H NMR spectrum (400 MHz, 300 K, CDCl3) of 18. 



S40 
 

 

1H NMR spectrum (600 MHz, 360 K, DMSO-d6) of 21a. 
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1H NMR spectrum (400 MHz, 300 K, CD3OD) of 21b. Different H/D-exchange rates can be estimated from the integrals of remaining incompletely 
exchanged NH signals. 
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1H NMR spectrum (600 MHz, 360 K, DMSO-d6) of 21c.  
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1H NMR spectrum (600 MHz, 360 K, DMSO-d6) of 22a. 
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1H NMR spectrum (600 MHz, 300 K, CD3OD) of 22b. Different H/D-exchange rates can be estimated from the integrals of remaining incompletely 
exchanged NH signals. 
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1H NMR spectrum (600 MHz, 300 K, CD3OD) of 22c. Different H/D-exchange rates can be estimated from the integrals of remaining incompletely 
exchanged NH signals. 
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13C NMR spectrum (151 MHz, 300K, CD3OD) of 22c. 
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1H NMR spectrum (600 MHz, 300 K, CD3OD) of 23b. Different H/D-exchange rates can be estimated from the integrals of remaining incompletely 
exchanged NH signals. 
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1H NMR spectrum (600 MHz, 300 K, CD3OD) of 23c. Different H/D-exchange rates can be estimated from the integrals of remaining incompletely 
exchanged NH signals. 
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13C NMR spectrum (151 MHz, 300 K, CD3OD) of 23c. 




